DTU.dk
Institutter & Centre
Forskningsgrupper
Forskningsgrupper
Genveje
Genveje
Telefonbog
Find vej/kort
Presseservice
For leverandører (CVR og EAN)
Kursusbasen
Studieinformation for studerende
DTU Inside (login)
DTU Adgangskursus
Job og Karriere
DTU Alumni
Webshop
DTU Bibliotek
DTU Orbit (Forskningsdatabase)
Kontakt
English
fysiknano
Personer
Publikationer
Projekter
fysiknano
Projektkatalog
Kursusinformation
Rapportskrivning
Arkiv
Forside
Arkiv
Valgte projekter E2016
Valgte projekter F2017
Valgte projekter F2018
Valgte projekter E2022
Forside
Arkiv
Valgte projekter E2016
Del til Facebook
Del til Twitter
Del til LinkedIn
Valgte projekter E2016
Siden viser de projekter som blev valgt. Resuméet er skrevet i begyndelsen af projektet.
Clean Room Fabrication of Superhydrophobic Structures
Anders Siig Dreisig s144108, Magnus Strandgaard s153327, Søren Engelberth Hansen s153462
Vejleder: Rafael J. Taboryski, Nanotech
Resume:
In this project, we will document the process of clean room fabrication of superhydrophobic structures on silicon wafers in collaboration with DTU Danchip. Our baseline goal is to learn how to operate the necessary equipment in the clean room, to produce a range of superhydrophobic structures. These structures are circular pillars, placed in either a non-hierarchical or a hierarchical setup, which will be fabricated using UV-lithography and DRIE etch. The wafers will then be examined in a SEM, to ensure we have obtained the desired dimensions of our structures, and we will measure contactangles on our product to determine the hydrofobicity. Lastly, we will deposit a layer of FDTS (Perfluorodecyltrichlorosilane) on the structures. The processes themselves will be explained in greater length in the report. Our aim is to produce two wafers at a time, one with a hierarchical setup and one without, and refine the fabrication process over several iterations. This means that we plan to have a minimum of 4 wafers complete at the end of the semester, so that we can see our progress in mastering the equipment, and, hopefully, an increase in superhydrophobicity.
Tree-on-a-Chip
Bjørn Gersholm Winckelmann s153418, Magnus Valdemar Paludan s153665, Sif Fink Arnbjerg-Nielsen, s153252
Vejleder: Kaare Hartvig Jensen, Fysik
Resume:
The aim of this project is to examine humidity induced convection pumps and potentially find an optimal design inferred from theory and experiments. The design offers several potential uses, one being a renewal energy source - a turbine could extract energy from a gas flow, and one being a way to create optimal biological environments by just changing a membrane. The project will investigate how aquatic plant cells pump atmospheric gasses below the water surface. The physical mechanism that drive the transport is tried through both theory and experiments. The current mathematical model of the oxygen flow estimates optimal pore radius at 0.2 µm, but the actual pore radius measured on aquatic plants is much larger (scaling from a few to 20 µm. The reason for the difference between the actual and theoretic pore radius is sought for. First we will study relevant literature and formulate a precise hypothesis. The current model will be improved by taking in the aspect of actual pore sizes. The mathematical model for diffusion through pores will be derived from solving Laplaces equation. An experimental design based on the experiment performed in ”A physical model involving Nucleopore membranes to investigate the mechanics of humidity-induced convection in Pragmites australis” (Armstrong, 1994) will be proposed in order to build and test setup. For example measurements of gas flow will be made on the experimental setup mimicking the structures in the plant leaves. A potential simulation of the experimental setup will be explored as well. In theory it will be explored if there’s an enhanced effect from using other solubles as medium for generating a high pressure in the chamber. If theory generates interesting results, it will be simulated with different solubles.
Chip fabrication for Transmission Electron Microscopy holder enabling in-situ studies of electrochemical processes
Dayang Li s136489, Rasmus Nielsen s153192
Vejledere: Kristian Mølhave, Murat Nulati Yesibolati, Nanotech
Resume:
Transmission electron microscopy (TEM) is a powerful structural and compositional analysis tool with high spatial and energy resolution. Unfortunately, its use is mainly restricted to solid samples. Samples involve liquid especially water, have been challenging because of the need to form a thin liquid layer that is stable within the microscope vacuum. Thanks to the construction of micro/nanolab in TEM holder, recent years witness the rapid development of liquid cell TEM technique, which allows us to apply the powerful capabilities of the TEM to the imaging and analysis of liquid specimens. Research results have been demonstrated in, for instance, nucleation process, crystal growth, and intrinsic electrochemistry reactions for micro/nano battery. To enable studies of electrochemical processes in the TEM , first it is very important to design and fabricate a cell with electrical contacts and dedicated microchips with different microelectrode materials. In this project, novel designs of chips with 5 electrodes and SiNx window for in-situ liquid electron microscopy of electrochemical processes will be investigated.
Diffusion af plasmapartikler i en fusionsreaktor
Daniel Munch Nielsen s143313, Mathias Berg Rosendal s151962
Vejleder: Jens Madsen, Fysik
Resume:
Grundet den høje temperatur, er det ikke muligt at opbevare fusionsplasma i en konventionel beholder, da denne ville smelte. Dette kan løses ved at placere plasmaet i en tokamak, hvor det ioneserede plasma kan fastholdes af magnetfeltet. I dette projekt undersøges det, i hvor stor grad partikelsammenstød fører til diffusion af plasmapartikler ud gennem magnetfeltet. For at løse dette, vil vi undersøge hvor ledes diffusionsligningen kan løses numerisk først i 1D. Vi vil i Python programmere en funktion, der kan løse dette. Vi undersøger præcisonen af denne. ved at sammenligne resultatet med resultatet fra den analytiske løsning for 1D. Herefter vil vi benytte vores programmerede løser til at udvide modellen til flere dimensioner og med færre antagelser.
Genetiske algortimer til design af Pt-baserede katalysatorer
Jakob Skotte Wied s153029, Mie Engelbrecht Jensen s154012
Vejledere: Tejs Vegge og Steen Lysgaard, Energi
Resume:
I dette projekt undersøges nye katalysatorer til spaltning af vand. Til dette er benyttet genetiske algoritmer til simulering af nye legeringer, der kan bruges som katalysatorer. Genetiske algoritmer danner nye materialer ud fra forskellige former for tilfældighed. De undersøgte legeringer består af en kombination af guld, platin, palladium, jern, kobber, kobolt, zink og nikkel. Tidligere er der på DTU-Energi fundet en god katalysator bestående af platin, guld og palladium. Da disse materialer alle er dyre, er ønsket at finde en billigere men stadig god katalysator.
Ultra-thin deposition of Au layers
Freja Høier s153286, Louis Evind-Poulsen s153689
Vejledere: Radu Malureanu og Andrei Lavrinenko, Fotonik
Resume:
We are trying to make an Au-layer thinner than 6nm on a wafer and at the same time the layer must be even. To get this result we are modifying the scattering machine by making changes in the timing of the rotation and speed of the rotation. In hope to find the best parameter we test with different parameters and compare the results and in the end we will check the probability to get the best results with the best found parameter.
Design of a fusion power plant
Daniel André Bunckenburg s153591, Christoffer Juul Huld s143226
, Christoffer Voigt s154308
Vejleder: Mirko Salewski, Fysik
Resume:
Formålet ved projektet Design of a fusion reactor er at undersøge mulige designs af tokamak reaktorer. Ud fra computermodeller baseret på teorien for tokamak reaktorer, vil vi finde ønskede designparametre for et givent energioutput og undersøge hvorvidt de kan virkeliggøres.
Atomare studier af CO
2
reduktion på guldlegeringer
Anne Tranberg Petersen s153799, Mikkel Raffnsøe Koefoed s152972
Vejledere: Tejs Vegge og Heine A. Hansen, Energi
Resume:
Vi vil i dette projekt forsøge at identificere en optimal katalysator overflade til reduktion af CO
2
til CO med COOH som mellemled i reaktionen. Katalysatoren vil bestå af en guldlegering, da guld er meget tæt på den optimale bindings energi for COOH og CO. Vi vil som udgangspunkt undersøge 4 guldlegeringer: AuIn
2
, AuBi
2
, AuGa
2
og AuAl
2
. For at bestemme den mest optimale katalysator vil vi anvende en række beregnings algoritmer, der er baseret på tætheds funktionel teori (DFT). Disse algoritmer vil blive brugt til at finde gitterkonstanterne for den kubiske enhedscelle, bindingsenergien til hhv. COOH og CO, og til at afgøre, hvordan reaktionskinetikken opfører sig. Reaktionen kan omdanne drivhusgassen CO
2
til en mere brugbar form, som kan benyttes til at lave en lang række organiske stoffer, herunder kunstigt brændstof.
Probe graphene plasmon polariton by use of Micro-FTIR
Christian Dam Vedel s153721, Asger Malte Laulund-Sommer s153889
Vejledere: Sanshui Xiao og Asger Mortensen, Fotonik
Resume:
Graphene has many advantageous physical properties, one of these, is the support of a transverse plasmon polariton mode. This plasmon mode can be used for enhancing the light-matter interaction in the near-infrared spectral region, where the “fingerprints” of molecular vibration can be found. The goal of this project is to deduce the theory for the resonance of the transverse plasmon mode as a function of the geometry, and experimentally confirming this theory on an array of graphene discs with varying radii. This will be done by fabricating the graphene discs in the cleanroom, and measuring the resonance of the discs on a Micro-FTIR in the visible and near-infrared spectral region.
Optimising the Raman red-shift of a soliton
Bastian Ellegård Grønager s153287, Jonatan Olsen s154217
Vejledere: Ole Bang og Ivan Bravo Gonzalo, Fotonik
Resume:
I dette projekt undersøger vi rødforskydningen af en soliton i en optisk fiber. Vi vil kigge på forskydningen teoretisk ved en numerisk simulering af en soliton. Denne kan findes ved at løse den ulinære schrödingerligning med split step fourier-metoden. Vi undersøger derefter en soliton i en optisk fiber eksperimentielt. Det ønskede mål er at vi skal kunne rødforskyde en soliton med
en bølgelængde på 1064 nm til omkring 2000 nm.
Droplet impact on superhydrophobic surfaces
Freja Henrich Due s151719, Martin Lieberkind Andersen s152569, Mathias Zambach s151724
Vejledere: Rafael Taboryski og Agnieszka Telecka, Nanotech
Resume:
This project concerns the wetting properties of nanograss. We will investigate three different wafers with nanograss of different opening angels. These surfaces will be characterized using SEM and AFM. Ultimately our goal is to find a correlation between the opening angle of the nanograss and its interaction with liquids like the bouncing height and the contact angle of a droplet.
Semiconductor quantum dots
Henrik Bødker Lassen s144661, Mattias Rasmussen s150161
Vejledere: Jesper Mørk og Mathias Rosdahl Jensen, Fotonik
Resume:
Halvleder kvanteprikker er et interessant fænomen indenfor kvantemekanikken. Der er adskillige fremtidsperspektiver inden for kvanteprikker, såsom lasere og TV. Dette projekt har essentielt to dele, hvor første del er en eftervisning af teori og data fra en artikel om netop kvanteprikker fra 2004. Dertil indgår simuleringer i programmet COMSOL. Anden del af projektet går på at undersøge nye områder af kvanteprikker, som fx kvanteprik lasere, koblede kvanteprikker, kvanteprikker og solceller eller kvanteprik TV.
Selvopvarming af magnetoresistive sensorer
Mathias Schärfe Lambach s153755, Mads Troelsgaard s154377, Thor August Schimmell Weis s154427
Vejleder: Mikkel Fougt Hansen, Nanotech
Resume:
The optomagnetic detection technique has so far been using a single wavelength light source. The modulation of the light intensity transmitted through a solution containing magnetic nanoparticles is measured as a function of frequency. This frequency is that of an oscillating magnetic field applied along the light path. Coupled magnetic and optical anisotropies of the magnetic nanoparticles leads to variations in the intensity of the transmitted light when the particles try to align their magnetic moment with the field. The magnetic nanoparticles experiences a drag that limits their frequency of oscillation. This drag creates a phase shift that is a function of the magnitude of the magnetic field, the particles hydrodynamic sizes, the viscosity-, and the the temperature of the solution. By plotting the measured light intensity as a function of the magnetic fields frequency, one can then determine the distribution of the magnetic nanoparticles' hydrodynamic sizes. Biomolecules can be indirectly detected because of clustering of nanoparticles, that leads to a larger hydrodynamic size. The light intensity transmission shows to be very sensitive to the relationship between the particle dimensions and the wavelength of the light. This effect has been explained as interference phenomena that takes place as the wavelength of the light approaches the size of the particle. Therefore it is of interest to be able to vary the wavelength of the light source.
Laser scattering amplitude as function of tissue depth penetration
Steen Serritslev Millinder s042585, Rasmus Tue Nielsen s152562
Vejleder: Peter Uhd Jepsen, Fotonik
Creating photocatalysts that use light to split water into hydrogen and oxygen
Nicklas Erichsen Kihm s143286, Julius Lucas Needham s144074
Vejleder: Brian Seger, Fysik
Resume:
In this project we will characterize the material BaCu2SnS4 as photocatalyst for use in photocatalytic water splitting with either oxygen or hydrogen evolution. We will prepare a sample and run tests on the material to determine whether the material is naturally n-type or p-type doped and thus is a photoanode or photocathode fit for oxygen or hydrogen evolution. We then wish to change the ratios of Br, Cu and Sn when preparing samples in order to change the doping type.
Synthesis and characterization of novel catalysts for methanol synthesis
Rikke Bo Bagge s151728, Kristine Krieger s154267
Vejleder: Christian Damsgaard, Fysik
Resume:
The main goal of this project is to optimize the deposition-precipitation method for the production of Ni5Ga3-catalyst. The project will be divided into two main parts: The optimization of the dep-prec. setup and determining which conditions produces a phase pure catalyst (pH-value, metal wt.). The catalysts will be examined with XRD (ex-situ), imaging (TEM) and activity tests (PFR).
Understanding, fabricating and characterizing graphene plasmonics in nanoribbons
Christoffer Emil Kurt Tost Jensen s152358, Markus Fritz Hansen s154379, Martin Schjeldrup Jessen s153298
Vejledere: Asger Mortensen og Paulo André Dias Gonçalves, Fotonik
Resume:
In this project we will attempt to describe surface plasmon polariton propagation in sheets of graphene, using Maxwells equations and boundary conditions. From physical considerations and computations we develop a design of graphene-silicon ribbondiscs and partake in steps of the fabrication in the cleanroom. We will then attempt to measure said surface plasmon polaritons and compare the data with our theoretical work and former experiments.
High temperature superconductors for wind power
Thomas Veile s153012, John Jakup Lindquist Christensen s154157
Vejledere: Asger B. Abrahamsen og Anders Christian Wulff, Energi
Resume:
This project investigates the critical current of the high-temperature superconductor YBCO for the purpose of using it in a new generation of windmills. Our goal is to connect three superconductor tapes and reach a critical current thrice as high as a single tape. The critical current will be measured using a four-point probes method while the YBCO tape is cooled to below critical temperature using liquid nitrogen. We strive to perform the same measurements in a vacuum chamber, as this will be the final set-up in the generators.
Hydraulisk spring
Anders Buch Thuesen s153242, Erik Andersen s153009
Vejleder: Tomas Bohr, Fysik
Resume:
I dette fagprojekt øns
ker vi, at undersøge det hydraliske spring. Ved brug af væsker ca. 10 gange mere viskøse end vand, er det muligt, at formen på springet bliver polygoner i stedet for cirkulære. Hvis nedstrømshøjden er tilpas stor, begynder polygonerne at rotere. Dette er et fænomen som blev opdaget i 2014 af A.R Teymourtash og M. Mokhlesi. Vi arbejder videre på deres opdagelse og betragtninger om rotationelle strukture i ikke-cirkulære hydrauliske spring.
Plasmonic colors - Color decorations without pigment
Dorte Rubæk Danielsen s153754, Kirstine Engell Sandager Nielsen s153195, Sophie Kargo s153037
Anders Kristensen og Xiaolong Zhu, Nanotech
Resume:
Today coloring methods are primarily based on dyes or pigments, which among others complicate recycling. By applying plasmonic nanostructures to a surface, all colors across the visible spectrum can be created using the same thin metallic material. This technique has proven successful as an alternative on flat surfaces. The next step is to examine to which extend plasmonic color metasurfaces can be stretched without affecting the color appearance or the nanostructure itself. The stretchability is important, if the technique should be applied to all types of surfaces curvatures, making it a competitive technology to conventional coloring methods. In this project finite element simulations of different stretchable materials are used to decide which polymer to use for the plasmonic color metasurface. The color of the structure is examined by reflectance measurements obtained upon mechanical stretching. The experimental results lead to a discussion of alternative designs for stretchable plasmonic color metasurfaces.
Opdateret af
Sanshui Xiao
den 28. juni 2022
Opdateret af
Sanshui Xiao
den 28. juni 2022