Valgte projekter E2015

Siden viser de projekter som blev valgt. Resuméet er skrevet i begyndelsen af projektet.

  1. High Energy X-ray measurements of solution-state samples
    Harald Gade Andersen, s144076, Steffen Sloth, s144101
    Kristoffer Haldrup og Jan Kehres, DTU Fysik
    Resume:
    Røntgenstråling åbner for mange måder, at analysere både faste og flydende stoffer med høj nøjagtighed. I dette projekt kigger vi på væsker, og mulighederne for at bruge røntgenspredning til identifikation af væskers molekylære struktur. Målinger med røntgenspredning tager normalt lang tid. Derfor vil vi gerne finde metode for at reducere målingstiden. Dette åbner op for muligheden for brug af røntgenspredning til nye formål. Der skal udvikles metoder hvor kvaliteten af data stadig er tilstrækkelig til identificering af væskernes struktur. Kvaliteten defineres ud fra signalstøj forholdet. I de konkrete eksperimenter vil vi anvende en energidispersiv røngtendiffraktometer, og en detektor med energiopløsning til at detektere spredningen af røntgenstråling. Til analysen af de opnåede resultater forventer vi at anvende Fouriertransformationer til at beregne prøvens molekylære struktur. Vi vil eksperimentere med længden af målingstiderne, og antallet af vinkler prøven bliver målt ved, for at undersøge kvaliteten af de opnåede data. Vores fokus er på strukturen af vand og simple vandige opløsninger, hvilke danner grundlag for mange andre stoffers struktur.
  2. Topology Optimization of Integrated Optical Components
    Magnus Middelboe Søborg-Madsen, s144063, Frederik Werner Isaksen, s144087, Roar Nind Steffensen, s144107
    Lars Hagedorn Frandsen, DTU Fotonik
    Resume:
    Kommunikation og datahåndtering via optiske komponenter er af stor interesse for computerindustrien, da dette muliggør dataoverførsel med større båndbredde end elektroniske komponenter. Desværre er nutidens optiske komponenter typisk meget plads- og energikrævende, hvilket ofte gør det upraktisk at integrere disse i selv store supercomputere. Vores fagprojekt handler om at designe siliciumbaserede optiske komponenter med størrelser på mikrometerskalaen. Dette gøres ved hjælp af topologioptimering; en invers design metode baseret på Finite-Difference Time-Domain beregninger der, givet en input-struktur omfordeler materiale indtil en givet egenskab af strukturen opfylder mål specificeret af brugeren. Optimeringsmetoden er automatiseret i en sådan grad, at en typisk optisk komponent kan designes med relativt få dataressourcer og sikrer at ydeevne og kompakthed er optimeret. Specifikt er målet for os, at opsplitte et bredbåndet input signal i én bølgeleder til to forskellige bølgeledere afhængigt af frekvensen; en slags lav-/høj-pas splitter.
  3. Modeling few-emitter nanolasers in cavity quantum electro-dynamical systems
    Frederik Diethelm Jacobsen, s144088, Jonas Bach Olsen, s144099
    Jesper Mørk, Andreas Dyhl Østerkryger og Weiqi Xue, DTU Fotonik
    Resume:
    During the first month, we have been working on understanding the basic theory of a simple laser, worked with the rate equations for carrier and photon density, and solved them numerically. The followup will be to play with the simulation. After the initial understanding of the rate equations, the project can go in several directions. These include: fitting the simulation to experimental data with a phc laser - the spontaneous emission factor's contribution to photon output - include quantum noise in the simulation meaning the rate equations will become stochastic differential equations.
  4. Fabrication and characterization of microstructures on extruded polymer foils
    Ulrik Leffers, s144085, Mark Kamper Svendsen, s144106
    Rafael Taboryski, DTU Nanotech
    Resume:
    The goal of this project is to create nanostructured polymer foils. The structures will serve to change the physical properties of the polymer surface. This could for example give a defraction pattern on the surface in order to make a hologram or we could produce a pattern to make the surface more hydrophobic. The nanostructured polymer foils will be made at Danapak using a nickel mold, which will be fabricated at DTU. In order to make the nickel mold, we will use photolithography to make a pattern on a silicon wafer, after which the wafer will be covered in nickel and the silicon will be removed.
  5. Ultra-thin deposition of Au layers
    Kimmie Katrine Moerner, s134490, Michelle Herlufsen, s144098
    Radu Malureanu og Andrei Lavrinenko, DTU Fotonik
    Resume:
    I DTU Danchips renrum forsøger vi at skabe helt nye materialer, med egenskaber der ikke findes i naturen. Disse kaldes hyperbolske metamaterialer og består af nanometer-tynde lag af skiftevis guld og dielektrika. Multi layers er fremstillet i andre laboratorier før, men det er dette projekts store udfordring at lave disse lag så tynde som muligt, forhåbentligt ned til 6 nm. Såfremt produktionen er succesrig, kan materialerne bruges inden for bl.a. kontrol af lys på chips og højopløsningsmikroskoper.
  6. Nanoparticle Sintering 
    Nicolai Støvring, s143118, Phillip Brinck Vetter, s144097
    Thomas W. Hansen, DTU Nanotech
    Resume:
    Catalysts have a huge impact on modern society as they are crucial for the efficiency and speed of many chemical processes. Among other things, they are responsible for converting the toxic NOx-gasses, that is a byproduct of engine something exhaust ignition, into carbondioxide and water vapor. In a catalyst we are interested in keeping the size of the nanoparticles that inhabit the surface at a minimum so as to maximize the total particle surface area, thus decreasing the reaction time. Unfortunately, by law of nature, the particles want to exists at an energy minimum, and so the catalysts have a relatively short lifespan at its most effective stage, when exposed to higher temperatures 700 - 1000 Kelvin, because the particles will aggregate to reduce their surface area. The goal of this project is to analyze how the particle distribution of a carbon grid with sputtered gold particles changes with time, when exposed to a temperature of 1000 Kelvin. This is done by looking at the sample in situ in a Transmission Electron Microscope (TEM), and capturing pictures for analysis.
  7. Design of a fusion power plant
    Peder Lyngby Nielsen, s144090, Martin Arentoft Jacobsen, s144104, Anders Jannik Ehlers Bjerrum, s144109
    Mirko Salewski, DTU Fysik
    Resume:
    Fusion energy is a promising alternative to fossil and fission fuel, however, there are some major technical difficulties in achieving and building an effective and large-scale fusion reactor. In this project, we will further develop an already existing program for simulating a simple tokamak fusion reactor. We will develop the simulation’s dependence on different parameters, for instance, we will implement the aspect ratio between the different radii in the reactor as an input in the program. This will allow us to get simulations that are more realistic. If time allows we will try to simulate and test the newly proposed ARC-reactor that MIT recently published.
  8. Ultra-thin deposition of Au layers
    Ivan Bergmann Larsen, s114756, Nicolai Jensen, s124376, Søren Sandbæk Bendtsen, s134231
    Radu Malureanu og Andrei Lavrinenko, DTU Fotonik
    Resume:
    I dette fagprojekt vil det forsøges at fremstille en plasmonisk bølgeleder. Dette skal gøres ved at deponere et meget tyndt lag guld på en silicium overflade. For at kunne lave en god bølgeleder skal guldlaget være så tyndt og uniformt som muligt, for at minimere signal tab. Under normale omstændigheder kan man deponere guld ned til en tykkelse på ~20 nm før overfladen bliver ujævn og guldet klumper sig sammen i små øer. Vi vil fremstille en bølgeleder hvor guldlaget er ~6 nm. Dette er opnået i Danchips renrum på DTU, men kun med én af deponeringsmaskinerne. Vi skal opnå samme resultater på en anden, automatisk maskine, da den der bliver brugt i dag styres manuelt, hvilket introducerer menneskelige usikkerheder. Fordele ved at benytte bølgeledere i moderne teknologi er at de kan transportere information på et meget højere frekvensdomæne sammenlignet med elektronbaseret teknologi. Elektron baseret teknologi kan gøres meget lille, det ser vi bl.a. i computer processorer, men den er relativt langsom i forhold til optisk teknologi, som derimod er svær at gøre lille. Men med en bølgeleder der benytter overflade plasmoner, kan man opnå både en lille formfaktor og de høje frekvenser som foton-teknologi tilbyder.
  9. Design af mikrobølge-spejle til brug i fusionsforskning
    Mads Lundsgaard Andersen, s144066, Aksel Sylvest Obdrup, s144089
    Stefan Kragh Nielsen og Frank Leipold, DTU Fysik
    Resume:
    I en tid, hvor vi er på jagt efter rene og vedvarende energikilder, er fusionsforskning et felt med stort potentiale. Fusionsenergi udvindes ved at lade deuterium og tritium kollidere ved meget høj temperatur, hvor elektronerne river sig løs fra atomkernerne. I fusionsreaktoren haves et plasma, hvor man er interesseret i at måle på kernepartiklers hastigheder, og dette kan gøres vha. mikrobølgestråling. DTU er medvirkende i at designe mikrobølgespejle til tokamakerne ASDEX Upgrade og Iter, som skal modtage og sende mikrobølger fra plasmaet. Projektets mål er ved anvendelse af bl.a. teori om gaussiske beams at designe, 3D printe og opmåle et sæt kvasi-optiske spejle, som skal bruges til fusionsforskning på ASDEX. Disse spejle skal bruges til at afbøje mikrobølgerne i forbindelse med kalibrering af udstyret.
  10. Tree-on-a-chip: Design of synthetic plant lungs
    Anneline Hegelund Christensen, s141127
    Kaare H. Jensen, DTU Fysik
    Resume:
    In energy conversion reactions, in e.g. plants, oxygen plays an important role. In some plants, such as water lilies, oxygen diffuses through a porous membrane into the leaf, which contains a high concentration of water vapour, and is then transported through pipe like structures to other parts of the plant. The flow of oxygen depends on a number of factors, including the partial pressures of the different gas components and the resistances offered by the pores and pipe like structures, which in turn depend on their respective geometries and sizes. In this project, a simple structure mimicking the structure of plants is studied in order to create and analyse a mathematical model of the flow of oxygen. Further, simulations of the process are made using Comsol and compared to the mathematical model. Lastly, a device mimicking the structure studied is made and gas- flow rates from it measured.
  11. Perovskite Solar Cells
    Kitty Steenberg, s141812, Magnus Galsgård Petersen, s144092
    Brian Seger og Peter Vesborg, DTU Fysik
    Resume:
    One of the major problems in the world that we have to solve, is the global warming. It is well known, that we have to find some way to replace the oil- and gas-based energy with sustainable energy. One solution is to use the solar energy. The efficiency of Perovskite solar cells has evolved rapidly over the last few years, and they seem to be the future in the solar cell technology. Our goal in this project is to fabricate reproducible Perovskite solar cells under ambient conditions and in our homemade glovebox. Afterwards we will compare their efficiencies. This project will support on-going research on Perovskites.
  12. Exploring the optical absorption in graphene layers with multiple-scattering theory
    Asbjørn Meldgaard Moltke, s142804, Keld Fernstrøm, s144075, Rasmus Eilkær Hansen, s144073
    Asger Mortensen og Martijn Wubs, DTU Fotonik
    Resume:
    In this project we will focus on graphene and its optical properties. Experiments show that a single layer of graphene absorbs far more light than one might expect when applying classical conducting theory known from metals. So far we've derived the absorption in metals based on the Drude-Lorentz model and will expand the model with band structure theory. The final goal will be to explain why graphene acts unlike metals and come up with a model describing how graphene will absorb light when stacked using multiple-scattering theory.
  13. Produktion af tynde film til solceller med laserbestråling
    Morten Riis Bagger, s144081, Poul Karl Rosenberg, s144093
    Jørgen Schou, DTU Fotonik
    Resume:
    Vi vil i forbindelse med vores fagprojekt fremstille tynde film af materialet kaldet CZTS (en blandning kobber, zink, tin og svovl) vha. laserstråling. Formålet med CZTS er at fungere som et halvledermateriale i en solcelle. I CZTS kræves tyndere lag af det og det er lettere tilgængelige materialer, end i de i dag anvendte silliciumbaserede solceller. CZTS-baserede solceller vil altså være billigere at producere end siliciumbaserede, problemet er bare, at de ikke er lige så effektive. Men siden 1995 har man kun gjort fremskridt i at øge effektiviteten af CZTS. Vi vil derfor forsøge at fremstille CZTS på en måde som ikke er afprøvet før og teste dens effektive egenskaber. Metoden der bliver brugt er kaldt PLD (Pulse Laser Deposition), hvor man benytter en høj intensitets laser til at bestråle et mål i et vakuum kammer. Dette leder til en ''eksplosiv fjernelse'' af målets materiale. Materialet bliver så samlet på et substrat, som så danner en tynd film af målets materiale.
  14. Design af mikrobølge-spejle til brug i fusionsforskning
    Bjarke Juul Georgi Østergaard, s144070, Tobias Gylling Konradsen, s144077
    Stefan Kragh Nielsen og Frank Leipold, DTU Fysik
    Resume:
    Vi har fået til opgave at lave en forsøgsopstilling som kan måle mikrobølgestråling. Der er en forældet opstilling som vi skal optimere og automatisere. opstillingen er et måleapperat, som kan bevæge sig frit i et lodret plan ved hjælp af to motere. Opgaven lyder på at vi laver et script i python, bruge det i en computer, som er forbundet til opstillingen, som kan måle intensiteter på overfladen og samle data til det. Opsillingen måler en gaussisk mikrobølgestråling, ud fra man gerne vil vide til hvilken afstand, vil strålen have størst intensitet.
  15. High temperature superconductors for wind power
    Mette Bybjerg Brock, s134252, Anton Simon Bjørnlund, s144095, Olivia Fjord Sloth, s144110
    Asger Bech Abrahamsen og Anders Christian Wulff, DTU Wind Energy
    Resume:
    The goal of this project is to find out whether a bifilar coil winding is a better way to test a several hundred meter long piece of high temperature superconducting coated conductor tape than a non-bifilar winding winding. This is to enable the wind turbine industry to test tape used for the low rotation speed generators at a much lower cost. This will help the research teams working to create the new generators, which will considerably speed up the process of developing 20MW windmills. During the project, a superconductive coil with bifilar winding connected to three electrodes will be constructed. The coil is then to be tested at 77K, using liquid nitrogen as coolant and with two 400A power supplies connected. The coil is tested under two different magnetic conditions, where the current directions will be inverted in one of the windings in order to test the critical current in relation to a varying magnetic field. If time allows, further tests will furthermore include two different levels of currents in the bifilar windings.
  16. Optical stretcher and force calculations
    William Frisch Møller, s144067, Alexander Tångberg Kristensson, s144084
    Kirstine Berg-Sørensen, DTU Fysik
    Resume:
    An optical stretcher is a novel laser tool to micro-manipulate, trap and stretch living biological cells. As with most optical traps, the optical stretcher works by the principle of momentum conservation of the incoming laser beam forming the trapping region. Our focus with this project is to perform force calculations on optically trapped cell-like structures and develop a model through numerical analysis and the principle of minimization of energy, capable of accurately predicting cell deformations and elasticity. Ultimately we aim to develop a complete model to describe deformations of red blood cells, and if the time allows, cancer cells.
  17. High temperature superconductors for wind power
    Alexander Engels Ryming, s144072, Jia Jue Johannes Chen, s144080
    Asger Bech Abrahamsen og Anders Christian Wulff, DTU Wind Energy
    Resume:
    Our physics project is about superconducting tapes intended for use in wind turbine generators and MR-systems. Compared to regular conductors these S.C. (superconductor) tapes (coated conductors) are highly efficient with zero resistivity. However, the current S.C. NbTn2 has critical temperatures much lower than the preferable and economical YBCO which uses liquid nitrogen. The project objective is to work with the YBCO type II S.C., to create and measure a persistent current in a closed superconductive cycle consisting of a coil of coated S.C. tape and a non-S.C. switch.
  18. Perovskite Solceller
    Tor Alexander Elmelund, s134723, Sebastian Dalsgaard, s141043
    Peter Vesborg og Martin Bækbo, DTU Fysik
    Resume:
    The object of the project is to examine how to prepare methylammonium lead halide perovskite solar cells in a reproducible manner, using a solution based preparation scheme. In recent years these, in terms of solar cells, fairly novel materials have gained a substantial amount of attention due to their electrical and optical properties which are very well suited for photovoltaic devices. The Fag-projects will support ongoing research to combine a provskite and a Si cell, to form a so-called tandem device which can deliver the potential needed to perform unassisted water splitting. As the band gap of the perovskite material depends on the halide used both the iodide and bromide based compounds must be examined to identify any differences in the preparation procedure of CH3NH3PbI3 and CH3NH3PbBr3.Each project can be split into several sub-projects whose completion will facilitate the solution of the overall problem.
    As CH3NH3PbX3 (X = I, Cl, Br) is known for being unstable in atmospheres containing water the first order of business will be to design and construct a suitable glove box system in which the solar cells can be manufactured. By controlling the atmosphere one can ensure that the preparation conditions remain the same from day to day thus increasing the reproducibility of the fabrication procedure.
    Following this the parameter space for the spin coating method must be examined so that the optimum preparation parameters can be found. To limit the investigations, previously established parameters as well as literature values will serve as a starting point.
    When appropriate preparation parameters have been found the cells prepared in the glove box should be compared with cells prepared under ambient conditions as well as literature examples to illustrate the success of the fabrication procedure.
    During the optimization different characterization methods such as UV-vis, XRD and J-V measurements will be used to benchmarked the fabricated cells.

  19. Characterizing epitaxial growth
    Michael Clemens Bloch, s144082
    Kresten Yvind, DTU Fotonik
    Resume:
    This project is mainly about the charactierization of the mixed ratio of quaternary components, of semi conducting metals, and implementing it in an overview map of wavelengths corresponding to the mixed ratio. All this is done by using the theory of photoeluminecense and x-ray defraction to gain lattice constant definition for the given mixed ratio of semi conducting metals.
  20. Understanding graphene plasmonics with multiple-scattering theory
    Lauge Platz Bertelsen, s144096, Victor Elkjær Birk, s144086, Markus Greve Bech, s144065
    Asger Mortensen og Martijn Wubs, DTU Fotonik
    Resume:
    Grafen er et materiale hvis eksistens, man har haft kendskab til i l ngere tid. Det er dog først i 2006, at et hold lykkedes med at "isolere"et enkelt grafit-lag (graphen). Grafen har siden da været et offer for masser af eksperimentel undersøgelse til forståelse af dets simple struktur og vilde fysiske egenskaber, bl.a. skaber grafen muligheden for at fremstille kvantetransistore, hvilket har store potentielle muligheder indenfor halvlederteknologi. Dem er vi også interesserede i at vide mere om og derfor har vi besluttet af kaste os ud i dette spændende projekt.
  21. Single-photon sources for quantum information processing
    Jens H. Hemmingsen, s135101, Benjamin Cordes, s133239, Mikkel Lynggaard Bank, s144103
    Niels Gregersen og Andreas Dyhl Østerkryger, DTU Fotonik
    Resume:
    Simulating the light-matter interaction in a photonic nanowire single-photon source, in order to obtain efficient transmission of light from the nanowire into an optical fiber. Our goal is to optimize the design geometry, in order to improve data transfer rate of existing technology or for future use in quantum computing.
  22. Droplet impact on superhydrophobic surfaces
    Abdelali Bioue, s134256, Erik Lenstrup, s144091
    Rafael Taboryski, DTU Nanotech
    Resume:
    Denne opgave unders ger og behandler PP (polypropylene), PE (polyethanol) og TPU (termoplastisk polyurethane) med udgangspunkt i deres hydrofobiske og hydrofile engenskaber. Dette gøres ved at undersøge de forskellige matrialers kontaktvinkler, hysterese samt overfladiske strukturegenskaber. Overfladerne støbes ved "polymer injection molding" med en ru overflade samt en glat overflade, dette tillader en undetsægelse af "roll-off" vinklen for matrialerne og kantaktvinklen. Når disse undesøgelser er lavet foretages der en sammenligning af de forskellge stoffer, dette gøres med fokus på TPU da det er dette matriales hydradiske egenskaber er ukendt. Ved sammenligningen kan det konkluderes hvorvidt TPU er hydrofilt og/eller hydrofob. Udover sammenligningen indeholder opgavem også en kort gennemgang af "poly injection molding" –maskinen samt "cantract angle goniometer"